INVADE Large Scale Event

Barcelona, 20th of November 2019

Smart system of renewable energy storage based on <u>IN</u>tegrated E<u>V</u>s and b<u>A</u>tteries to empower mobile, <u>D</u>istributed and centralised <u>E</u>nergy storage in the distribution grid

Catalan Pilot

Estabanell – Vera Palma, Ramon Gallart

This project has received funding from the *European Union's Horizon 2020 Research and Innovation programme* under Grant Agreement No 731148.

Agenda - Content

- Aim of the Catalan pilot
- Catalan pilot setup
- Implementation
- Results and conclusions

Aim of the Catalan pilot

Invade purpose:

Make better use of energy storage systems in the electric system, to increase the share of renewables in the grid.

Catalan pilot

Use case 2
Centralized battery installed at secondary substation

Test and validate use of flexibility from one centralized battery to provide services to DSOs and BRPs, for:

- Grid congestion management
- Voltage control
- Controlled islanding
- Self-balancing portfolio optimizations

Aim of the Catalan pilot

INVADE platform

Optimization Operation Control

212 kWh battery

2. Backup services

BRP

Catalan pilot setup – location and stakeholders

Canovelles @ OLes Franquese

estabanell distribució

- network of over 1.100 km
- servicing more than 56.000 power customers
- distributes electricity for more than 800 secondary substations

DSO

sestabanell *energia*

- electricity retailer
- commercializing 100% electricity from renewable sources

BRP

Pilot implementation setup

212 kWh battery

Power electronics device

Optimization and remote control of the battery with the Invade platform

Results and conclusions

Continuous testing and validation. Learnings very good to be applied for DSOs future grid congestion management techniques.

Technology validation for DSO congestion management

What has been achieved?

KPIs Catalan pilot

Savings from energy losses 4%

Congestion reduction issues

Energy and power reduction

Islanding time

BRP cost savings

Battery and PED technologies validated to provide backup services to critical building.

2h backup services provided by the battery

Assumptions considered:

- BRP flex. requests are always accepted by the FO and energy is always delivered;
- Costs of the flex. requests are neglected.

BRP savings up to 30%

Results and conclusions

Learnings:

- Highly dependent on the BM applied.
- With current regulation DSO savings do not apply.
- Technology costs still very expensive but with prediction to diminish.
 - Potential for grid investment reduction up to 23,258.95 €

What has been achieved?

KPIs Catalan pilot

Grid investments reduction

Optimization diesel generator

Potential of increase in grid hosting capacity by 1.6%

Hosting capacity of the grid

Validation of the technology for backup purposes instead of the diesel generator.

Decrease in CO₂ emissions by up to 144kg per year.

Any question or comment?

Thank you!

